Abstract

Hydrogen is considered as a viable alternative to traditional fossil fuels. Hydrogen evolution reaction (HER) by electrochemical water splitting is the most reliable and effective way for the sustainable production of pure hydrogen. The design and synthesis of highly active and stable non-noble-metal-based electrocatalysts is the core of the large-scale application of this technology. Herein, peony petal-like CoMnP/NF nanomaterials growing on nickel foam (NF) are prepared via facile hydrothermal and phosphorization methods. The results showed that CoMnP/NF had excellent HER activity in acidic and alkaline media. In 0.5 M H2SO4, CoMnP/NF only needed 66.6 mV overpotential to drive the current density of 10 mA cm−2, with a Tafel slope of 38.8 mV dec−1. In addition, a particularly low overpotential of 53.9 mV and Tafel slope of 63 mV dec−1 are required to achieve the same current density in the 1 M KOH electrolyte. Meanwhile, the electrocatalyst showed good stability after 1000 cyclic voltammetry tests and 12 h I-T tests. In the 1 M KOH electrolyte, the current density of 10 mA cm−2 achieved with only 1.70 V battery voltage, and the electrocatalyst showed excellent stability. The performance of CoMnP/NF can be attributed to the synergistic effect between Co and Mn atoms and the high electrochemical surface area (ECSA). This study provides a valuable strategy for the synthesis of non-precious metals and high-performance catalytic materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.