Abstract

Designing economical and nonprecious catalysts with a catalytic performance as good as that of noble metals is of great importance in future renewable bioenergy production. In this study, the metal–organic framework (MOF) was applied as a precursor template to synthesize Co3O4 nanoparticles with a carbon matrix shell (denoted as M-Co3O4). To select the synthesized optimal catalyst, stearic acid was chosen as the model reactant. The effects of catalyst dosage, methanol dosage, water dosage, temperature, and reaction time on catalytic efficiency were examined. Under the designed condition, M-Co3O4 exhibited high catalytic performance and the catalyst showed higher conversion of stearic acid (98.7%) and selectivity toward C8–C18 alkanes (92.2%) in comparison with Pt/C (95.8% conversion and 93.2% selectivity toward C8–C18). Furthermore, a series of characterization techniques such as scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption isotherms (Brunauer–Emmett–Teller (BET) method), and thermogravimetric analysis (TGA) was applied to investigate the physicochemical properties of the catalysts. Finally, we proposed that decarbonization (deCO) could be the presumably mechanistic pathway for the production of C8–C18 alkanes from the decomposition of stearic acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call