Abstract

The sensitivity of surface enhanced Raman spectroscopy (SERS) depends on the construction of “hot spots” and the number of analyte molecules adsorbed onto the substrates. Herein, we have constructed a kind of SERS substrate based on gold nanostars (Au NSs) coated with nickel-cobalt layered double hydroxide (LDH) using a zeolitic imidazolate skeleton as sacrificial template via nickel ions etching. LDH was used as the absorption medium for target molecules, and concurrently prevented Au NSs from agglomeration to improve stability and uniformity of the substrate. Meanwhile, encapsulated Au NSs were used as the enhancement medium for Raman detection. The porous LDH shell around the Au NSs promoted the target molecules to approach the Au NSs, which was certified by the experimental results of UV–Vis absorption and simulation analysis using the density functional theory. The detection of Rhodamine 6G solution with a concentration of 10−9 M was realized by the AuNS/LDH, and the relative standard deviation of Raman signals was less than 10%. Therefore, this work provides a new idea and a suitable structure to improve SERS signal intensity by introducing adsorption medium into the SERS substrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.