Abstract

The toxic smoke produced by the combustion of flexible polyurethane foam (FPUF) may not only caused casualties, but also polluted the environment. Here, double metal hydroxide derived from ZIF-67 (MOF-LDH) modified Ti3C2TX (Ti3C2TX@MOF-LDH) was innovatively designed to solve the serious smoke and fire hazards of FPUF. The FPUF nanocomposite containing 6 wt% Ti3C2Tx@MOF-LDH achieved a 16.1% reduction in total smoke production (TSP) along with 22.2% reduction in peak smoke production rate (PSPR), which greatly reduced the hazard of smoke. At the same time, toxic gases, such as carbon monoxide (CO), carbon dioxide (CO2), and aromatic compounds, showed the same reduction pattern. In addition, the heat release of FPUF nanomaterials was also suppressed. In particular, the FPUF/Ti3C2Tx@MOF-LDH 3.0 achieved 110.4% and 76.1% increase in compressive strength and tensile strength, respectively, confirming the effective mechanical enhancement. Therefore, this work provided a new reference for the preparation of high-performance FPUF nanocomposites with low smoke, low fire hazard and excellent mechanical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call