Abstract

Nanozyme-based colorimetric sensing has drawn immense attention due to the rapid development of nanozyme in recent years. However, the selectivity of nanozyme-based colorimetric sensing greatly limits its subsequent practical application. It is well known that sample pretreatment can not only improve selectivity by eliminating the sample matrix interference, but also improve sensitivity by enriching trace targets. Based on the easy facile surface modification properties of nanozyme, we rationally designed nanozyme combined with sample pretreatment for colorimetric biosensing, through separation and enrichment, thereby improving the selectivity and sensitivity of the nanozyme colorimetric biosensing. As a proof of concept, the detection of Hg2+ by nanozyme-based colorimetric sensing was used as an example. Magnetic peroxidase-like nanozyme Fe3S4 was designed and synthesized. The selectivity is improved by the specific adsorption of S-Hg bond and the interference elimination after magnetic separation. In addition, the sensitivity is improved by magnetic solid-phase extraction enrichment. Our established colorimetric sensing based on Fe3S4 nanozyme integrated sample pretreatment with an enrichment factor of 100 and the limit of detection (LOD) is 26 nM. In addition, this strategy was successfully applied to detect Hg2+ in environmental water samples. Overall, the strategy showed good selectivity and sensitivity, providing a new practical method for the application of nanozyme-based biosensing in sample pretreatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call