Abstract
Photocatalytic membranes can effectively integrate membrane separation and photocatalytic degradation processes to provide an eco-friendly solution for efficient water purification. It is of great significance to develop highly efficient photocatalytic membranes driven by visible light to ensure the long-term stability of membrane separation systems and the maximum utilization of solar energy. Metal-organic framework (MOF) is an emerging photocatalyst with a well-defined structure and tunable chemical properties, showing a broad application prospect in the construction of high-performance photocatalytic membranes. Herein, this work provides a comprehensive review of recent advancements in MOF-based photocatalytic membranes. Initially, this work outlines the main tailoring strategies that facilitate the enhancement of the photocatalytic activity of MOF-based photocatalysts. Next, this work introduces commonly used methods for fabricating MOF-based photocatalytic membranes. Subsequently, this work discusses the application and mechanisms of MOF-based photocatalytic membranes toward organic pollutant degradation, metal ion removal, and membrane fouling mitigation. Finally, challenges in developing MOF-based photocatalytic membranes and their practical applications are presented, while also pointing out future research directions toward overcoming these existing limitations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.