Abstract

Satellite range scheduling plays a very important role in guaranteeing the normal operation and the real-time control of in-orbit satellites. Although there appears a stronger demand for multi-objective optimization of satellite monitoring departments, multiple scheduling criteria are rarely considered simultaneously. To address the multi-objective satellite range scheduling problem (MOSRSP), a general MOEA based memetic algorithm (MOEA-MA) framework is proposed, which optimizes the failure rate of ground-satellite communication requests and the load-balance degree of remote-tracking antennas. Based on a novel decision model for MOSRSP, the conflict-resolution and load-balance operators and the tabu search metaheuristic are designed to implement the local search operations in the MOEA-MA. Different types of the MOEAs, including the domination-based MOEAs, decomposition-based MOEAs and metric-based MOEAs are adopted to implement the evolutionary operations in the MOEA-MA. The highlight of this paper is the effective application of the MOEA-MAs to practical scheduling problems, where the two most concerning objectives are well addressed. The MOEA-MAs that adopt five well-known MOEAs are given and examined by the Benchmarks problems. Computational results indicate that the MOEA-MAs outperform the original MOEAs in terms of the metrics of coverage, hypervolume and spacing, which show good performance and application prospect for the MOSRSP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call