Abstract
We adapt modulus of continuity estimates to the study of spectra of combinatorial graph Laplacians, as well as the Dirichlet spectra of certain weighted Laplacians. The latter case is equivalent to stoquastic Hamiltonians and is of current interest in both condensed matter physics and quantum computing. In particular, we introduce a new technique which bounds the spectral gap of such Laplacians (Hamiltonians) by studying the limiting behavior of the oscillations of their solutions when introduced into the heat equation. Our approach is based on recent advances in the PDE literature, which include a proof of the fundamental gap theorem by Andrews and Clutterbuck.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.