Abstract

Due to the complex mesostructure and components of composite active layers in lithium-ion battery (LIB) electrodes, coupled with the concentration-dependent material properties and eigenstrains, efficiently estimating the effective modulus of the active layers remains a great challenge. In this work, the classic Mori–Tanaka method is found to be unable to estimate the modulus of the active layer. By realizing the importance of the mesostructure feature, a rod-rod model is proposed. The resulting modulus is expressed analytically. It is shown that the rod-rod model can accurately estimate the modulus evolution of the active layer if the material properties of the components and the evolution of volume fractions are known in advance. Moreover, a simplified rod-rod model is also developed to reduce the complexity of the proposed method. By knowing the volume fractions at two arbitrary states of charge and subsequently determining two constants, the simplified model can estimate the modulus efficiently. Considering both its accuracy and its simplicity, the simplified rod-rod model is the most suitable for the estimation. Thus, the methods developed in this work provide a new perspective for analyzing the material properties of composite active layers in LIB electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.