Abstract
Tikhonov regularization is one of the most popular methods for the solution of linear discrete ill-posed problems. In many applications the desired solution is known to lie in the nonnegative cone. It is then natural to require that the approximate solution determined by Tikhonov regularization also lies in this cone. The present paper describes two iterative methods, that employ modulus-based iterative methods, to compute approximate solutions in the nonnegative cone of large-scale Tikhonov regularization problems. The first method considered consists of two steps: first the given linear discrete ill-posed problem is reduced to a small problem by a Krylov subspace method, and then the reduced Tikhonov regularization problems so obtained is solved. The second method described explores the structure of certain image restoration problems. Computed examples illustrate the performances of these methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.