Abstract
We connect the homotopy type of simplicial moduli spaces of algebraic structures to the cohomology of their deformation complexes. Then we prove that under several assumptions, mapping spaces of algebras over a monad in an appropriate diagram category form affine stacks in the sense of Toen–Vezzosi’s homotopical algebraic geometry. This includes simplicial moduli spaces of algebraic structures over a given object (for instance a cochain complex). When these algebraic structures are parametrised by properads, the tangent complexes give the known cohomology theory for such structures and there is an associated obstruction theory for infinitesimal, higher order and formal deformations. The methods are general enough to be adapted for more general kinds of algebraic structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.