Abstract
We consider different notions of equivalence for Morse functions on the sphere in the context of persistent homology, and introduce new invariants to study these equivalence classes. These new invariants are as simple, but more discerning than existing topological invariants, such as persistence barcodes and Reeb graphs. We give a method to relate any two Morse--Smale vector fields on the sphere by a sequence of fundamental moves by considering graph-equivalent Morse functions. We also explore the combinatorially rich world of height-equivalent Morse functions, considered as height functions of embedded spheres in $\mathbf R^3$. Their level-set invariant, a poset generated by nested disks and annuli from levels sets, gives insight into the moduli space of Morse functions sharing the same persistence barcode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.