Abstract
We prove the genus zero part of the generalized Witten conjecture, relating moduli spaces of higher spin curves to Gelfand–Dickey hierarchies. That is, we show that intersection numbers on the moduli space of stable r-spin curves assemble into a generating function which yields a solution of the semiclassical limit of the KdVr equations. We formulate axioms for a cohomology class on this moduli space which allow one to construct a cohomological field theory of rank r−1 in all genera. In genus zero it produces a Frobenius manifold which is isomorphic to the Frobenius manifold structure on the base of the versal deformation of the singularity Ar−1. We prove analogs of the puncture, dilaton, and topological recursion relations by drawing an analogy with the construction of Gromov–Witten invariants and quantum cohomology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.