Abstract

We obtain a compactness result for various classes of Riemannian metrics in dimension four; in particular our method applies to anti-self-dual metrics, Kähler metrics with constant scalar curvature, and metrics with harmonic curvature. With certain geometric non-collapsing assumptions, the moduli space can be compactified by adding metrics with orbifold-like singularities. Similar results were obtained for Einstein metrics in (J. Amer. Math. Soc. 2(3) (1989) 455, Invent. Math. 97 (2) (1989) 313, Invent. Math. 101(1) (1990) 101), but our analysis differs substantially from the Einstein case in that we do not assume any pointwise Ricci curvature bound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.