Abstract

AbstractLet c \( \supset {C_F}\) be a fractional \( {C_F}\) -ideal. In this chapter we define c-polarized RM abelian surfaces and c-polarized CM abelian surfaces. The moduli space of all c-polarized RM abelian surfaces is a classical Hilbert modular surface, and the moduli space of all c-polarized CM abelian surfaces determines a codimension two cycle on the Hilbert modular surface. Useful references for Hilbert modular surfaces include [10], [14], [19], [46], [54], and [56].KeywordsModulus SpaceAbelian VarietyQuaternion AlgebraAbelian SurfaceQuadratic SpaceThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.