Abstract

We present a method to construct the extended Kähler cone of any Calabi-Yau threefold by using Gopakumar-Vafa invariants to identify all geometric phases that are related by flops or Weyl reflections. In this way we obtain the Kähler moduli spaces of all favorable Calabi-Yau threefold hypersurfaces with h1,1 ≤ 4, including toric and non-toric phases. In this setting we perform an explicit test of the Weak Gravity Conjecture by using the Gopakumar-Vafa invariants to count BPS states. All of our examples satisfy the tower/sublattice WGC, and in fact they even satisfy the stronger lattice WGC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.