Abstract
In this paper, we construct toric data of moduli space of quasi maps of degree $d$ from P^{1} with two marked points to weighted projective space P(1.1,1,3). With this result, we prove that the moduli space is a compact toric orbifold. We also determine its Chow ring. Moreover, we give a proof of the conjecture proposed by Jinzenji that a series of intersection numbers of the moduli spaces coincides with expansion coefficients of inverse function of -log(j(tau)).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.