Abstract

In this paper, we will give a complete geometric background for the geometry of Painlev\'e $VI$ and Garnier equations. By geometric invariant theory, we will construct a smooth coarse moduli space $M_n^{\balpha}(\bt, \blambda, L) $ of stable parabolic connection on $\BP^1$ with logarithmic poles at $D(\bt) = t_1 + ... + t_n$ as well as its natural compactification. Moreover the moduli space $\cR(\cP_{n, \bt})_{\ba}$ of Jordan equivalence classes of $SL_2(\C)$-representations of the fundamental group $\pi_1(\BP^1 \setminus D(\bt),\ast)$ are defined as the categorical quotient. We define the Riemann-Hilbert correspondence $\RH: M_n^{\balpha}(\bt, \blambda, L) \lra \cR(\cP_{n, \bt})_{\ba}$ and prove that $\RH$ is a bimeromorphic proper surjective analytic map. Painlev\'e and Garnier equations can be derived from the isomonodromic flows and Painlev\'e property of these equations are easily derived from the properties of $\RH$. We also prove that the smooth parts of both moduli spaces have natural symplectic structures and $\RH$ is a symplectic resolution of singularities of $\cR(\cP_{n, \bt})_{\ba}$, from which one can give geometric backgrounds for other interesting phenomena, like Hamiltonian structures, B\"acklund transformations, special solutions of these equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.