Abstract
Let A be a Koszul algebra and M a finitely generated graded A-module. Suppose that M is generated in degree 0 and has a pure resolution. We prove that, if rℰ(M) ≠ 0 then M is Koszul; and if in addition M is not projective, then the converse is true as well, where r denotes the graded Jacobson radical of the Yoneda algebra [Formula: see text] of A, and [Formula: see text] denotes the Ext module of M.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.