Abstract
The collection of reflection hyperplanes of a finite reflection group is called a Coxeter arrangement. A Coxeter arrangement is known to be free. K. Saito has constructed a basis consisting of invariant elements for the module of derivations on a Coxeter arrangement. We study the module of \(\mathcal{A}\)-differential operators as a generalization of the study of the module of \(\mathcal{A}\)-derivations. In this article, we prove that the modules of differential operators of order 2 on Coxeter arrangements of types A, B and D are free, by exhibiting their bases. We also prove that the modules cannot have bases consisting of only invariant elements. Two keys for the proof of freeness are the “Cauchy-Sylvester theorem on compound determinants” and the “Saito-Holm criterion for freeness.”
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.