Abstract

Let G be a finite group of exponent m and let k be a field of characteristic prime to m, containing the m-th roots of unity. For any Rost cycle module M over k, we construct exact sequences detecting the unramified elements in Serre's group of invariants of G with values in M in terms of ''residue morphisms associated to pairs (D,g), where D runs through the subgroups of G and g runs through the homomorphisms \mu_m\to G whose image centralises D. This allows us to recover results of Bogomolov and Peyre on the unramified cohomology of fields of invariants of G, and to generalise them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.