Abstract
Conventional microinverter or module-integrated converter (MIC)-based photovoltaic (PV) systems are prone to be complex and costly because each MIC requires not only a boost converter to bridge a huge voltage gap between a PV panel and grid but also desirably a differential power processing (DPP) converter to preclude partial shading issues. This paper proposes a novel MIC based on cascaded quasi-Z-source inverters (qZSIs) with DPP capability. A traditional qZSI and voltage multiplier (VM)-based DPP converter are integrated into a single unit with sharing active switches and magnetic components, achieving system- and circuit-level simplifications. In addition, a novel control strategy utilizing two control freedoms of shoot-through duty cycle $d_{st}$ and modulation index M to simultaneously perform maximum power point tracking (MPPT) and DPP function, respectively, is also presented. A 150 W prototype for a standard PV panel consisting of three substrings is built, and experimental tests are performed emulating partial shading conditions. The results demonstrate that the proposed integrated qZSI could perform MPPT with satisfactory preventing partial shading issues while generating ac voltage at the inverter output.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.