Abstract

Let G = (V,E) be a graph of order n. Let R be a commutative ring and I denote the set of all ideals of R. Let ? : E ? I be an edge labeling. A generalized spline of (G, ?) is a vertex labeling F : V ? R such that for each edge uv, F(u) ? F(v) ? ?(uv). The set R(G,) of all generalized splines of (G, ?) is an R-module. In this paper we determine conditions for a subset of R(G,?) to form a basis of R(G,?) for some classes of graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.