Abstract

In this paper, the structural design of modular reconfigurable robots (MRRs) is studied. This problem is defined as the determination of proper module sizes according to the robot’s payload and end-effector deflection specifications. Because an MRR has multiple configurations, a simple design process is proposed in order to avoid performing the structural design stage at each configuration. The final structural design is only carried out at a single configuration that can guarantee the robot’s satisfactory performance for all remaining feasible configurations. It is shown that the module structural design stage can be performed at the local coordinate frame of each module. While the module local force requirement can be fully determined, the determination of the module local deformation requirement is redundant. Thus, there can exist multiple design solutions. To overcome this problem, a nonlinear approach using a genetic algorithm is used to search for an optimal solution. Finally, a design simulation is performed on an example MRR, and the results show the effectiveness of the proposed design method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.