Abstract

This paper presents a method for the design and analysis of reconfigurable parallel robots. The inherent modularity in a parallel robot lends itself as a natural candidate for reconfiguration. By taking the branches as building blocks, many modular parallel robots can be constructed, from which a reconfigurable parallel robot can be realized. Among three types of reconfigurations, namely, geometry morphing, topology morphing, and group morphing, the method presented here is for the last two reconfigurations, thereby advancing the current research that is mainly limited to geometry morphing. It is shown that the module-based method not only provides a systematic way of designing a reconfigurable parallel robot, but also offers a unified modeling for robot analysis. Two examples are provided, one showing the topology morphing and the other showing the group morphing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.