Abstract
Multiple resonance thermally activated delayed fluorescence (MR-TADF) molecules are emerging as promising candidates for high-resolution organic light-emitting diode (OLED) displays, but MR-TADF emitters always suffer from an unsatisfactory rate constant of reverse intersystem crossing (k RISC) due to inherently low spin orbital coupling strength between excited singlet and triplet states. Herein, we systematically investigate the long-range charge transfer (LRCT) and heavy-atom effects on modulating the excited state natures and energy levels via integrating diversiform electron-donating units with the MR skeleton. Compared with unsubstituted analogues, newly designed MR-TADF emitters exhibit significantly boosted k RISC values and close-to-unity photoluminescence quantum yield especially for tBuCzBN-PXZ (2.5 × 105 s-1) and tBuCzBN-Ph-PSeZ (2.1 × 105 s-1). Leveraging these exceptional properties, the maximum external quantum efficiency values of tBuCzBN-PXZ- and tBuCzBN-Ph-PSeZ-based solution-processed OLEDs can reach 21.3% and 19.4%, which are in the first tier of reported solution-processed MR-TADF binary OLEDs without employing additional sensitizers. This study provides a framework for modulating photoelectrical properties of MR-TADF emitters through fastidiously regulating LRCT and heavy-atom effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.