Abstract

Lung adenocarcinoma is the most frequent form of non-small cell lung cancer. Inside the tumor mass, uncontrolled cell proliferation generates hypoxic areas leading to activation of hypoxia-inducible factors (HIFs) responsible for neovascularization and tumor metastasis. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two neuropeptides widely distributed in respiratory organs. Previous studies have demonstrated that these peptides interfere with hypoxic pathways in various diseases, including tumors. However, their modulatory role in HIFs expression in lung adenocarcinomas has not yet been evaluated. In the present paper, we detected the expression profile of PACAP, VIP and related receptors in healthy and adenocarcinoma human lung tissue. To characterize peptides’ modulatory effects on HIFs expression, we also exposed A549 lung adenocarcinoma cells and human normal bronchial epithelial BEAS-2B cells to microenvironmental hypoxia by treating them with deferoxamine (DFX). The results showed that PACAP and VIP significantly reduced HIF-1α and HIF-2α levels in both cell lines following hypoxic stress. The HIF-3α expression profile was related to cellular phenotype as it was lower in BEAS-2B and higher in A549 cells under low oxygen tension. In lung adenocarcinoma cells, peptide treatment restored HIF-3 α expression to control levels. These results suggest that endogenous PACAP and VIP exert controversial roles in cellular hypoxic microenvironments depending on the pathophysiological conditions of the lung tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call