Abstract

Chemical overexposure is a growing environmental risk factor for many medical issues. Cobalt toxicity from environmental, industrial, and medical exposure has previously been linked to neurological impairment. Hence, the current study looked into the neuroprotective potential of curcumin, a natural polyphenol contained in the spice turmeric, against cobalt-induced neurotoxicity. Adult rats were randomly divided into six groups as follows: control, 40mg/kg cobalt chloride (CoCl2) only, 240mg/kg curcumin only, 120mg/kg or 240mg/kg curcumin, or 100mg/kg vitamin C co-administered with CoCl2. The administration was via oral route daily for 4weeks. After that, neurobehavioral tests were undertaken to evaluate short-term spatial memory. Biochemical investigation was performed to determine the hippocampal levels of status via measures of SOD, CAT, GST, and LPO. Furthermore, immunohistochemical assessment of the expression of GFAP and Nrf2 in the hippocampus was carried out. In the CoCl2 group, the results showed altered behavioral responses, a decrease in antioxidant activities, increased expression of GFAP and the number of activated astrocytes, and decreased immunoexpression of Nrf2. These effects were mitigated in the curcumin- and vitamin C-treated groups. These results collectively imply that curcumin enhances memory functions in rats exposed to cobalt possibly by attenuating oxidative responses, mitigating astrocytosis, and modulating Nrf2 signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call