Abstract

Optokinetic testing is a non-invasive technique, widely used for visual functional evaluation in rodents. The modulatory influence of optokinetic stimulus parameters such as contrast level and grating speed on head-tracking response in normal and retinal degenerate (RD) mice ( rd10) and rats (S334ter-line-3) was evaluated using a computer-based testing apparatus. In normal (non-RD) mice and rats, specific stripe width and grating speed was found to evoke maximum optokinetic head-tracking response. In line-3 RD rats, the contrast sensitivity loss was slow and remained close to the baseline (normal control) level until very late in the disease, whereas, in rd10 mice the progression of the contrast sensitivity loss was more rapid. Observed differences between rd10 mice and line-3 RD rats in the progression of contrast sensitivity loss may not be directly related to the degree of photoreceptor loss. In young RD mice, the modulatory influence of stimulus parameters on optokinetic head-tracking response was similar to normal control animals. During later stages, slower grating speed was required to evoke the maximum optokinetic response. Grating speed had lesser apparent influence on the response properties of line-3 RD rats. Discrepancies between the two RD models in the modulatory influence of optokinetic stimulus parameters can be the manifestation of fundamental species differences and/or differences in the degeneration pattern. This study highlights the importance of careful selection of appropriate stimulus parameters for testing optokinetic head-tracking response in RD animals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.