Abstract

Malathion is one of the most commonly used organophosphorus (OP) pesticides. It is important to regard that exposure to OP poisoning may cause anxiety and depression. Malathion toxicity induces cholinergic symptoms. Brain-derived neurotrophic factor (BDNF) is the most profusely expressed neurotrophin in the central nervous system; it promotes the survival of neurons. Regular exercise improves brain well-being and enhances recovery from brain Injuries. It is suggested that BDNF may mediate these effects. Therefore, this study was planned to assess the modulatory effects of regular exercise performance on brain BDNF level, cholinergic activity, oxidative stress and apoptosis in male and female rats subjected to neurotoxicity induced by malathion administration. Materials and methodsThirty-two adult male and thirty-two adult female albino rats were included in this study. The rats were divided into four equal groups (8rats). Control group, malathion treated group, exercised group, malathion exercised group. Acetylcholinesterase (AchE) activity, total antioxidant capacity (TAC), BDNF level and Caspase 3 activity were assessed. ResultsFemale rats had higher baseline content of BDNF in brain homogenate than male rats. Malathion administration induced a significant decrease in BDNF level in female rats and in the total antioxidant capacity in both male and female rats. A significant elevation in caspase 3 activity was detected in the malathion treated groups, with more elevation in female rats. Swimming exercise improved BDNF level, AchE activity, and apoptosis in both male and female rats in all groups. In addition, male rats were more cholinergic system responders to regular exercise than female rats. ConclusionIt could be concluded that malathion induced elevation in oxidative stress and apoptosis in all rats, with reduction in BDNF level in female rats. Meanwhile, regular swimming exercise was found to improve brain health through modulation of BDNF level and cholinergic activity. It is recommended to practice regular exercise to maintain brain health. Further studies are required to clarify the involvement of sex hormones in BDNF regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call