Abstract
Expression of the chemokine receptor CXCR4 allows breast cancer cells to migrate towards specific metastatic target sites which constitutively express CXCL12. In this study, we determined whether this interaction could be disrupted using short-chain length heparin oligosaccharides. Radioligand competition binding assays were performed using a range of heparin oligosaccharides to compete with polymeric heparin or heparan sulphate binding to I125 CXCL12. Heparin dodecasaccharides were found to be the minimal chain length required to efficiently bind CXCL12 (71% inhibition; P<0.001). These oligosaccharides also significantly inhibited CXCL12-induced migration of CXCR4-expressing LMD MDA-MB 231 breast cancer cells. In addition, heparin dodecasaccharides were found to have less anticoagulant activity than either a smaller quantity of polymeric heparin or a similar amount of the low molecular weight heparin pharmaceutical product, Tinzaparin. When given subcutaneously in a SCID mouse model of human breast cancer, heparin dodecasaccharides had no effect on the number of lung metastases, but did however inhibit (P<0.05) tumour growth (lesion area) compared to control groups. In contrast, polymeric heparin significantly inhibited both the number (P<0.001) and area of metastases, suggesting a differing mechanism for the action of polymeric and heparin-derived oligosaccharides in the inhibition of tumour growth and metastases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.