Abstract
Inhibiting apical sodium-dependent bile acid transporter (ASBT) has been identified as a potential strategy to reduce plasma cholesterol levels. Thus, in this study, we aimed to identify polyphenols that inhibited ASBT activity and to elucidate their mechanism. ASBT is responsible for most of the taurocholic acid (TC) uptake in Caco-2 cells. Of the 39 polyphenols examined, theaflavin (TF)-3-gallate (TF2A) and theaflavin-3'-gallate (TF2B) have been found to significantly reduce TC uptake in Caco-2 cells to 37.4 ± 2.8 and 33.8 ± 4.0%, respectively, of that in the untreated cells. The results from the TC uptake assay using N-acetylcysteine suggested that the inhibitory effect of TF2A and TF2B was attributed to the oxidization of their benzotropolone rings and their covalent bonding with ASBT's cysteine. TC uptake was reduced in the COS-7 cells expressing recombinant ASBT whose cysteine residues were mutated to alanine. Finally, the substrate concentration-dependent TC uptake assay showed that TFs competitively inhibited TC uptake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.