Abstract

Heavy metals are ubiquitous environmental pollutants that are extremely dangerous for public health, but the molecular mechanisms of their cytotoxic action are still not fully understood. In the present work, the possible contribution of the mitochondrial ATP-sensitive potassium channel (mK(ATP)), which is usually considered protective for the cell, to hepatotoxicity caused by heavy metals was investigated using polarography and swelling techniques as well as flow cytometry. Using isolated liver mitochondria from adult male Wistar rats and various potassium media containing or not containing penetrating anions (KNO3, KSCN, KAcet, KCl), we studied the effect of mK(ATP) modulators, namely its blockers (5-hydroxydecanoate, glibenclamide, ATP, ADP) and activators (diazoxide, malonate), on respiration and/or membrane permeability in the presence of hepatotoxins such as Cd2+, Hg2+, and Cu2+. It has been shown for the first time that, contrary to Hg2+ and depending on media used, the mK(ATP) modulators affect Cd2+- and/or Cu2+-induced alterations in mitochondrial swelling and respiration rates, although differently, nevertheless, in the ways compatible with mK(ATP) participation in both these cases. On rat AS-30D ascites hepatoma cells, it was found that, unlike Cd2+, an increase in the production of reactive oxygen species was observed with the simultaneous use of Cu2+ and diazoxide; in addition, there was no protective effect of diazoxide against cell death, which also occurred in the presence of Cu2+. In conclusion, the relationships (functional, structural and/or regulatory) between mK(ATP), components of the mitochondrial electron transport chain (CI, CII-CIII and/or ATP synthase, CV) and mitochondrial permeability transition pores were discussed, as well as the role of these molecular structures in the mechanisms of the cytotoxic action of heavy metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.