Abstract

The early school years shape a young brain's capability to comprehend and contextualize words within milliseconds of exposure. Parsing word sounds (phonological interpretation) and word recognition (enabling semantic interpretation) are integral to this process. Yet little is known about the causal mechanisms of cortical activity during these early developmental stages. In this study, we aimed to explore these causal mechanisms via dynamic causal modelling of event-related potentials (ERPs) acquired from 30 typically developing children (ages 6–8 years) as they completed a spoken word-picture matching task. Source reconstruction of high-density electroencephalography (128 channels) was used to ascertain differences in whole-brain cortical activity during semantically “congruent” and “incongruent” conditions. Source activations analyzed during the N400 ERP window identified significant regions-of-interest (pFWE<.05) localized primarily in the right hemisphere when contrasting congruent and incongruent word-picture stimuli. Dynamic causal models (DCMs) were tested on source activations in the fusiform gyrus (rFusi), inferior parietal lobule (rIPL), inferior temporal gyrus (rITG) and superior frontal gyrus (rSFG). DCM results indicated that a fully connected bidirectional model with self-(inhibiting) connections over rFusi, rIPL and rSFG provided the highest model evidence, based on exceedance probabilities derived from Bayesian statistical inferences. Connectivity parameters of rITG and rSFG regions from the winning DCM were negatively correlated with behavioural measures of receptive vocabulary and phonological memory (pFDR<.05), such that lower scores on these assessments corresponded with increased connectivity between temporal pole and anterior frontal regions. The findings suggest that children with lower language processing skills required increased recruitment of right hemisphere frontal/temporal areas during task performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.