Abstract

BackgroundWe and others have previously shown that alterations in the mammalian gut microbiome are associated with diet, notably early life exposure to a maternal high fat diet (HFD). Here, we aimed to further these studies by examining alterations in the gut microbiome of juvenile Japanese macaques (Macaca fuscata) that were exposed to a maternal HFD, weaned onto a control diet, and later supplemented with a synbiotic comprised of psyllium seed and Enterococcus and Lactobacillus species.ResultsEighteen month old offspring (n = 7) of 36% HFD fed dams were fed a control (14% fat) diet post weaning, then were synbiotic supplemented for 75 days and longitudinal stool and serum samples were obtained. All stool samples were subjected to 16S rRNA metagenomic sequencing, and microbiome profiles and serum lipids and triglycerides were compared to untreated, healthy age matched and diet matched controls (n = 7). Overall, 16S-based metagenomic analysis revealed that supplementation exerted minimal alterations to the gut microbiome including transient increased abundance of Lactobacillus species and decreased abundance of few bacterial genera, including Faecalibacterium and Anaerovibrio. However, serum lipid analysis revealed significant decreases in triglycerides, cholesterol, and LDL (p < 0.05). Nevertheless, supplemented juveniles challenged 4 months later were not protected from HFD-induced gut dysbiosis.ConclusionsSynbiotic supplementation is temporally associated with alterations in the gut microbiome and host lipid profiles of juvenile Japanese macaques that were previously exposed to a maternal HFD. Despite these presumptive temporal benefits, a protective effect against later HFD-challenge gut dysbiosis was not observed.

Highlights

  • We and others have previously shown that alterations in the mammalian gut microbiome are associated with diet, notably early life exposure to a maternal high fat diet (HFD)

  • We have previously shown that exposure to a maternal HFD during gestation and lactation is associated with impaired islet vascularization, increases in hepatic lipids, and dysbiosis of the offspring gut microbiome at 1 year of age [18, 24, 25]

  • Alterations of the juvenile gut microbiome are associated with synbiotic supplementation Examining taxonomic differences between untreated juveniles and synbiotic supplemented juvenile offspring (Fig. 1), a b we identified shifts in bacterial taxa (Fig. 2)

Read more

Summary

Introduction

We and others have previously shown that alterations in the mammalian gut microbiome are associated with diet, notably early life exposure to a maternal high fat diet (HFD). We have previously shown that exposure to a maternal HFD during gestation and lactation is associated with impaired islet vascularization, increases in hepatic lipids, and dysbiosis of the offspring gut microbiome at 1 year of age [18, 24, 25]. This model provides a unique opportunity to closely examine interactions between dietary exposures, metabolic disease, and the microbiome. Inherent to this notion of benefit is the assumption that the gut is colonized by these probiotic strains and species, evidence demonstrating either transient or persistent colonization is lacking

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call