Abstract

The multiple Exp-function method is employed for seeking the multiple soliton solutions to the generalized (3+1)-dimensional Kadomtsev-Petviashvili (gKP) equation, where contains one-wave, two-wave, and triple-wave solutions. The periodic wave including (exponential, $ \cosh $ hyperbolic, and $ \cos $ periodic), cross-kink containing (exponential, $ \sinh $ hyperbolic, and $ \sin $ periodic), and solitary containing (exponential, $ \tanh $ hyperbolic, and $ \tan $ periodic) wave solutions are obtained. In continuing, the modulation instability is engaged to discuss the stability of obtained solutions. Also, the semi-inverse variational principle is applied for the gKP equation with four major cases. The physical phenomena of these received multiple soliton solutions are analyzed and demonstrated in figures by choosing the specific parameters. By means of symbolic computation these analytical solutions and corresponding rogue waves are obtained with the help of Maple software. Via various three-dimensional, curve, and density charts, dynamical characteristics of these waves are exhibited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.