Abstract

The modulational instability associated with discrete breathers in 2D quantum ultracold atoms is studied by using the Glauber’s coherent state combined with a semi-discrete approximation and multiple-scale methods. The linear stability analysis exhibits an intriguing threshold amplitude and instability regions associated with modulational growth rate. In addition, we demonstrate a coexistence of two bright intrinsic localized modes namely, the radial symmetric and bilateral symmetric modes, at the center and at the edges of the Brillouin zone, respectively, by alternating the on-site parameter interaction. Numerical investigations reveal a good agreement with the theoretical analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.