Abstract

Modulational instability has been used to explain the formation of breathers and rogue waves qualitatively. In this paper, we show modulational instability can be used to explain the structure of them in a quantitative way. In the first place, we develop a method to derive general forms for Akhmediev breathers, rogue waves and their multiple or high order ones in a N-component nonlinear Schrödinger equations. The existence condition for each pattern is clarified clearly with a compact algebraic equation. Moreover, we show that the existence condition of ABs and RWs is consistent with the dispersion relation of the linear stability analysis on the background solution. The results further deepen our understanding on the quantitative relations between modulational instability and homoclinic orbits solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call