Abstract

Two main spatial frequency and quantitative calculations and measurements am, used to study the imaging system of three industrial digital radiography (IDR) modules for non-destructive testing (NDT), namely complementary metal oxide semiconductor (CMOS) flat-panel digital detector with 50 mu m pixel pitch, computed radiography (CR) with phosphor imaging plate with 25 mu m pixel pitch and laser-type film digitiser with 50 mu m pixel pitch. The modulation transfer function (MTF) and noise power spectrum (NPS) measurement and calculations were adapted on order to evaluate the image quality of IDR images. The MTF has been used to characterise the resolution properties of analogue and digital X-ray imaging systems and measure image deterioration due to optical factors, such as diffusion of image forming radiation. The NPS is used in determining noise in images produced and the choices of normalisation of the NPS vary slightly from researcher to researcher, but the underlying methodology is consistent. In order to easily compare these two measurements and calculations, the integral of up to the system Nyquist frequency was used as the final image quality quantitative evaluation. For the MTF measurement and calculation, four regions of interest (ROI) were, defined to portray the randomness in performing real testing. The four ROI are then compared with each other. For the NPS measurement and calculation, ten ROI were defined, scattered and averaged to have overall noise estimation. From the measurements and calculations which were done, the averaged MTF at 20% modulation for the laser-type film digitiser system is 6.55 cycles/mm, CR modulated 4.48 and CMOS modulated 2.83 cycles/mm. For NPS measurement and calculation, the result obtained in decreasing order is laser-type film digitiser, CMOS and CR. The laser-type film digitiser system modulates the best transfer function at 20% but does not have the lowest NPS. The lowest and stable NPS is the CR system but it has the lowest modulating capability at 20%. The study shows that in order to perform NDT by using the evaluated modules, the user must know the true capability, of the system and how, it is designed for specific application and discontinuity detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call