Abstract

A Scophony-configuration infrared scene projector, consisting of a raster-scanned CO<sub>2</sub> laser and an acousto-optic (AO) modulator, was characterized for modulation transfer function (MTF) performance. The MTF components considered in the model were the Gaussian beam input to the AO cell, the finite aperture of the scan mirror, the width of the detector in the image plane, the transfer function of the amplifier electronics, and a term caused by Bragg-angle detuning over the bandwidth of the amplitude modulation (AM) video signal driving the AO cell. The finite bandwidth of the input video signal caused a spread in the Bragg angle required for maximum diffraction efficiency. In the Scophony configuration, a collimated laser beam enters the AO cell at only one particular angle, so a falloff of diffraction efficiency (and hence MTF) resulted as the modulation frequency was increased. The Bragg-angle detuning term was found to dominate the measured system MTF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.