Abstract

In optical fibers, the higher-order nonlinear Schrodinger (NLS) dynamical equation which describes the beyond the classic slowly varying envelopes and spatiotemporal dispersion of pulses is investigated. By applying the proposed modified extended mapping method, the optical soliton solutions of higher-order NLS dynamical equation with the coefficients of group velocity dispersion, second-order spatiotemporal dispersion and cubic nonlinearity are deduced. The obtained solutions have important applications in applied sciences and engineering. The formation conditions are specified on parameters in which optical solitons can exist for this media. The moments of some constructed solutions are presented graphically which facilitate the researchers to comprehend the physical phenomena of this equation. The modulation instability analysis is utilized to discuss the model stability, which verifies that all obtained solutions are stable and exact. Other such forms of the system arising in sciences and engineering can also be solved by this steadfast, influential and effective method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call