Abstract

The three-phase buck-type rectifier has advantages as front-end converter for high efficiency power supplies in telecommunication and data centers. In this paper, the different commutation types of a three-phase buck rectifier with a freewheeling diode are analyzed through experiments using different semiconductor devices. Further, the switching loss of the converter is modeled and calculated for four space vector modulation schemes. It is shown that when the switches include minority carrier devices, such as Si PiN diode, IGBT and Reverse Blocking IGBT (RB-IGBT), more switching loss will occur in the commutation between two switches than between a switch and the freewheeling diode. This difference can be reduced if majority carrier devices, such as SiC Schottky diodes, are used in series with the switches. The modulator can be arranged to eliminate the specific transition which has the most switching loss. According to the analysis, each modulation scheme has its own field for high efficiency application. The advantageous modulation scheme is given for different device combinations in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call