Abstract

This paper proposes a method based on kernel density estimation (KDE) and expectation condition maximization (ECM) to realize digital modulation recognition over fading channels with non-Gaussian noise in the cognitive radio networks. A compound hypothesis test model is adopt here. The KDE method is used to estimate the probability density function of non-Gaussian noise, and the improved ECM algorithm is used to estimate the fading channel parameters. Numerical results show that the proposed method is robust to the noise type over fading channels. Moreover, when the GSNR is 10 dB, the correct recognition rate for the digital modulation recognition under non-Gaussian noise is more than 90%. Gaussian noise, and the improved ECM algorithm is used to estimate the fading channel parameters. Numerical results show that the proposed method is robust to the noise type over fading channels. Moreover, when the GSNR is 10 dB, the correct recognition rate for the digital modulation recognition under non-Gaussian noise is more than 90%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.