Abstract

Automatic modulation recognition (AMR) has been wildly used in both military and civilian fields. Since the recognition of digital signal at low signal-to-noise (SNR) ratio is difficult and complex, in this paper, a clustering analysis algorithm is proposed for its recognition. Firstly, the digital signal constellation is extracted from the received waveform (digital signal + noise) by using the orthogonal decomposition and then, it is denoised by using an algorithm referred to as auto density-based spatial clustering technique in noise (ADBSCAN). The combination of density peak clustering (DPC) algorithm and improved K-means clustering is used to extract the constellation’s graph features, the eigenvalues are input into cascade support vector machine (SVM) multi-classifiers, and the signal modulation mode is obtained. BPSK, QPSK, 8PSK, 16QAM and 32QAM five kinds of digital signals are trained and classified by our proposed method. Compared with the classical machine learning algorithm, the proposed algorithm has higher recognition accuracy at low SNR (less than 4dB), which confirmed that the proposed modulation recognition method is effective in noncooperation communication systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call