Abstract

AlN/ZrB 2 multilayered coatings were synthesized in a magnetron sputtering system. The extensive measurements were employed to investigate the influence of different nanoscale modulation periods and modulation ratios on microstructure and mechanical properties of the coatings. Analysis of X-ray diffraction, profiler and nanoindention indicated that multilayered coatings possessed much higher hardness and elastic modulus than monolithic AlN and ZrB 2 coatings. At the substrate negative bias of −80 V, maximum hardness (34.1 GPa) and elastic modulus (469.8 GPa) were obtained in the multilayer with Λ = 30 nm and t AlN: t ZrB2 = 1:3. This hardest multilayer showed a marked polycrystalline structure with the strong mixture of ZrB 2 (001), ZrB 2 (100), ZrB 2 (101), AlN (100) textures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.