Abstract
In this paper, we propose a workflow and a deep learning algorithm for recognizing Quadrature amplitude modulation signal(QAM), this design adopts a convolutional neural network (CNN) and Extreme Learning Machine (ELM) as the core,leverage the powerful feature extraction of CNN and fast classification learning of ELM. The spectrogram image features of the signal obtained by short-time Fourier transform (STFT) are input to the CNN-ELM hybrid model, the modulation mode of the QAM signal is finally recognized by ELM. This algorithm surmounts the shortcomings of traditional methods well, Simulation results also verify the superiority of the proposed system whose classification accuracy is beyond 99.86%.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.