Abstract

We consider radio applications where the nodes operate on batteries so that energy consumption must be minimized while satisfying given throughput and delay requirements. In this context, we analyze the best modulation strategy to minimize the total energy consumption required to send a given number of bits. The total energy consumption includes both the transmission energy and the circuit energy consumption. We show that for both MQAM and MFSK the transmission energy decreases with the BT/sub on/ product while the circuit energy consumption increases with T/sub on/, where B is the modulation bandwidth and T/sub on/ is the transmission time. Thus, in short-range applications where the circuit energy consumption is nonnegligible compared with the transmission energy, the total energy consumption is minimized by using the maximum system bandwidth along with an optimized transmission time T/sub on/. We derive this optimal T/sub on/ for MQAM and MFSK modulation in both AWGN channels and Rayleigh fading channels. Our optimization considers both delay and peak-power constraints. Numerical examples are given, where we exhibit up to 68% energy savings over modulation strategies that minimize the transmission energy alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.