Abstract

Purpose: This study was designed to determine whether the amount of endochondral growth response to mechanical compression and the underlying growth mechanism differed with night-time or day-time loading, relative to full-time loading. Methods: Mechanical compression (nominally 0.1 MPa stress) was applied across tibial and tail vertebral growth plates of growing Sprague–Dawley rats. Four groups of animals (five per group) were used: 24/24 h (full-time loading); 12/24 h (day-loading); 12/24 h (night-loading); and 0/24 h (sham instrumented). Contralateral tibiae and adjacent vertebrae served as within-animal controls. The animals were euthanized after eight days. Growth plates were processed for quantitative histology to measure 24-h growth, total and BrdU-positive proliferative zone chondrocyte counts, and hypertrophic chondrocytic enlargement in the growth direction. Results: Growth as a percentage of within-animal control averaged 82% (full-time); 93% (day-loading); 90% (night-loading); 100% (sham) for vertebrae. For proximal tibiae it averaged 70% (full-time); 84% (day-loading); 86% (night-loading); 89% (sham). Reduced amount of hypertrophic chondrocytic enlargement explained about half of this effect in full-time loaded growth plates, but was not significantly altered in half-time loaded growth plates. The remaining variation in growth was apparently explained by reduced total numbers of proliferative zone chondrocytes. These findings indicate that sustained compression loading suppressed growth more than intermittent loading at both anatomical locations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.