Abstract

To better know the photocatalytic performance of bismuth oxyhalides (BiOX, X = Cl, Br, I) regulated by incorporation of halides within nanostructures, BiOX nanosheets were synthesized through morphology controllable solvothermal method and characterized systematically. The organic structural property greatly influences the photocatalytic activity of BiOX: 1) as for neutral molecular phenol, BiOX shows photocatalytic activity in the order of BiOCl > BiOBr > BiOI under simulated sun light irradiation, and the photo-oxidation kinetics follow Eley–Rideal mechanism; and 2) for adsorbed anionic orange II (OII) and cationic methylene blue (MB), BiOX shows photocatalytic activity in the order of BiOCl > BiOBr > BiOI, and the photo-oxidation kinetics follow Langmuir-Hinshelwood mechanism. The crystal structure of the catalyst also greatly influences the photocatalytic activity of BiOX: 1) The relative photo-oxidation power of O2•− radicals or HO radicals involved in this study were different which were quantitatively detected using typical radical trapping agent, separately; 2) The relative oxidation power of photogenerated holes (h+) in this study were in the order of BiOCl > BiOBr > BiOI, which may be ascribed to lowering the valence band maximum edge of BiOX through incorporation of halides as the atomic number of halides decreased. This study provides novel explanation for fabricating BiOX heterojunctions with tunable photocatalytic reactivity via regulating the halides ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call