Abstract

Uridine phosphorylase (UPase) has been shown to play an important role in the antineoplastic activity of 5-fluorouracil (5-FU) and in the anabolism of its oral prodrug, capecitabine, through the conversion of 5'-deoxy-5-fluorouridine (5'-DFUR) into 5-FU. In this study, we investigated the effect of tumor necrosis factor-alpha (TNF-alpha) on UPase gene expression and 5'-DFUR antiproliferative activity and elucidated the involved signal transduction pathway. Our data indicate that TNF-alpha significantly induced UPase mRNA expression and its enzymatic activity in EMT6 murine breast cancer cells, leading to an enhanced cytotoxicity of 5'-DFUR. This is further confirmed by an increased incorporation of 5'-DFUR-originated 5-FU nucleotides into nucleic acids. To clarify the mechanism of TNF-alpha-induced UPase expression, we first observed the effect of TNF-alpha on the UPase promoter activity with a series of 5'-deleted promoter-luciferase constructs. Transient transfection analysis showed that the TNF-alpha-inductive pattern in EMT6 cells was consistent with the presence of a nuclear factor-kappaB (NF-kappaB) binding element (-1332/-1312 bp) in the UPase promoter region. Furthermore, electrophoretic mobility shift assays, supershift, and cotransfection assays revealed that the activation of p65 was responsible for UPase induction by TNF-alpha. Finally, the induction of UPase by TNF-alpha could be suppressed by PS-341, a NF-kappaB inhibitor. In summary, TNF-alpha efficiently induces UPase gene expression through a NF-kappaB subunit p65-dependent pathway enhancing cell sensitivity to 5'-DFUR. The elucidation of this regulation mechanism may aid in the clinical use of 5-FU-based chemotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call